## Posts Tagged ‘Cayley graph’

### On Tao’s talk and the 3-dimensional Hilbert-Smith conjecture

May 6, 2012

Last Wednesday Terry Tao briefly dropped by our little town and gave a colloquium. Surprisingly this is only the second time I hear him talking (the first one goes back to undergrad years in Toronto, he talked about arithmetic progressions of primes, unfortunately it came before I learned anything [such as those posts] about Szemeredi’s theorem). Thanks to the existence of blogs, feels like I knew him much better than that!

This time he talked about Hilbert’s 5th problem, Gromov’s polynomial growth theorem for discrete groups and their (Breuillard-Green-Tao) recently proved more general analogy of Gromov’s theorem for approximate groups. Since there’s no point for me to write 2nd-handed blog post while people can just read his own posts on this, I’ll just record a few points I personally found interesting (as a complete outsider) and moving on to state the more general Hilbert-Smith conjecture, very recently solved for 3-manifolds by John Pardon (who now graduated from Princeton and became a 1-st year grad student at Stanford, also appeared in this earlier post when he gave solution to Gromov’s knot distortion problem).

Warning: As many of you know I never take notes during talks, hence this is almost purely based on my vague recollection of a talk half a week ago, inaccuracy and mistakes are more than possible.

All topological groups in this post are locally compact.

Let’s get to math~ As we all know, a Lie group is a smooth manifold with a group structure where the multiplication and inversion are smooth self-diffeomorphisms. i.e. the object has:

1. a topological structure
2. a smooth structure
3. a group structure

It’s not too hard to observe that given a Lie group, if we ‘forget’ the smooth structure and just see it as a topological group which is a (topological) manifold, then we can uniquely re-construct the smooth structure from the group structure. From my understanding, this is mainly because given any element in the topological group we can find a unique homomorphism of the group $\mathbb{R}$ into the manifold, sending $0$ to identity and $1$ to the element. resulting a class of curved through the identity, a.k.a the tangent space. Since the smooth structure is determined by the tangent space of the identity, all we need to know is how to ‘multiply’ two such parametrized curves.

The way to do that is to ‘zig-zag’:

Pick a small $\varepsilon$, take the image of $\varepsilon$ under the two homomorphisms, alternatingly multiplying them to obtain a sequence of points in the topological group. As $\varepsilon \rightarrow 0$ the sequence becomes denser and converges to a curve.

The above shows that given a Lie group to start with, the smooth structure is uniquely determined by the topological group structure. Knowing this leads to the natural question:

Hilbert’s fifth problem: Is it true that any topological group which are (topological) manifolds admits a smooth structure compatible with group operations?

Side note: I had a little post-colloquium discussion with our fellow grad student Sam Lewallen, he asked:

Question: Is it possible for the same topological manifold to have two different Lie group structures where the induced smooth structures are different?

Note that neither the above nor Hilbert’s fifth problem shows such thing is impossible, since they both start with the phase ‘given a topological group’. My *guess* is this should be possible (so please let me know if you know the answer!) The first attempt might be trying to generate an exotic $\mathbb{R}^4$ from Lie group. Since the 3-dimensional Heisenberg group induces the standard (and unique) smooth structure on $\mathbb{R}^3$, I guess the 4-dimensional Heisenberg group won’t be exotic.

Anyways, so the Hilbert 5th problem was famously solved in the 50s by Montgomery-Zippin and Gleason, using set-theoretical methods (i.e. ultrafilters).

Gromov comes in later on and made the brilliant connection between (infinite) discrete groups and Lie groups. i.e. one see a discrete group as a metric space with word metric, ‘zoom out’ the space and produce a sequence of metric spaces, take the limit (Gromov-Hausdorff limit) and obtain a ‘continuous’ space. (which is ‘almost’ a Lie group in the sense that it’s an inverse limit of Lie groups.)

Hence he was able to adapt the machinery of Montgomery-Zippin to prove things about discrete groups:

Theorem: (Gromov) Any group with polynomial growth is virtually nilpotent.

The beauty of the theorem is (in my opinion) that we are given any discrete group, and all that’s known is how large the balls are (in fact, not even that, we know how large the large balls grow), yet the conclusion is all about the algebraic structure of the group. To learn more about Gromov’s work, see his paper. Although unrelated to the rest of this post, I shall also mention Bruce Kleiner’s paper where he proved Gromov’s theorem without using Hilbert’s 5th problem, instead he used space of harmonic maps on graphs.

Now we finally comes to a point of briefly mentioning the work of Tao et.al.! So they adopted Gromov’s methods of limiting and ‘ultra-filtering’ to apply to stuff that’s not even a whole discrete group: Since Gromov’s technique was to take the limit of a sequence of metric spaces which are zoomed out versions of balls in a group, but the Gromov-Hausdorff limit actually doesn’t care about the fact that those spaces are zoomed out from the same group, they may as well be just a family of subsets of groups with ‘bounded geometry’ of a certain kind.

Definition: An K-approximate group $S$ is a (finite) subset of a group $G$ where $S\cdot S = \{ s_1 s_2 \ | \ s_1, s_2 \in S \}$ can be covered by $K$ translates of $S$. i.e. there exists $p_1, \cdots, p_K \in G$ where $S \cdot S \subseteq \cup_{i=1}^k p_i \cdot S$.

We shall be particularly interested in sequence of larger and larger sets (in cardinality) that are K-approximate groups with fixed $K$.

Examples:
Intervals $[-N, N] \subseteq \mathbb{Z}$ are 2-approximate groups.

Balls of arbitrarily large radius in $\mathbb{Z}^n$ are $C \times 2^n$ approximate groups.

Balls of arbitrarily large radius in the 3-dimensional Heisenberg group are $C \times 2^4$ approximate groups. (For more about metric space properties of the Heisenberg group, see this post)

Just as in Gromov’s theorem, they started with any approximate group (a special case being sequence of balls in a group of polynomial growth), and concluded that they are in fact always essentially balls in Nilpotent groups. More precisely:

Theorem: (Breuillard-Green-Tao) Any K-approximate group $S$ in $G$ is covered by $C(K)$ many translates of subgroup $G_0 < G$ where $G_0$ has a finite (depending only on $K$) index nilpotent normal subgroup $N$.

With this theorem they were able to re-prove (see p71 of their paper) Cheeger-Colding’s result that

Theorem: Any closed $n$ dimensional manifold with diameter $1$ and Ricci curvature bounded below by a small negative number depending on $n$ must have virtually nilpotent fundamental group.

Where Gromov’s theorem yields the same conclusion only for non-negative Ricci curvature.

Random thoughts:

1. Can Kleiner’s property T and harmonic maps machinery also be used to prove things about approximate groups?

2. The covering definition as we gave above in fact does not require approximate group $S$ to be finite. Is there a Lie group version of the approximate groups? (i.e. we may take compact subsets of a Lie group where the self-product can be covered by $K$ many translates of the set.) I wonder what conclusions can we expect for a family of non-discrete approximate groups.

As promised, I shall say a few words about the Hilbert-Smith conjecture and drop a note on the recent proof of it’s 3-dimensional case by Pardon.

From the solution of Hilbert’s fifth problem we know that any topological group that is a n-manifold is automatically equipped with a smooth structure compatible with group operations. What if we don’t know it’s a manifold? Well, of course then they don’t have to be a Lie group, for example the p-adic integer group $\mathbb{Z}_p$ is homeomorphic to a Cantor set hence is not a Lie group. Hence it makes more sense to ask:

Hilbert-Smith conjecture: Any topological group acting faithfully on a connected n-manifold is a Lie group.

Recall an action is faithful if the homomorphism $\varphi: G \rightarrow homeo(M)$ is injective.

As mentioned in Tao’s post, in fact $\mathbb{Z}_p$ is the only possible bad case! i.e. it is sufficient to prove

Conjecture: $\mathbb{Z}_p$ cannot act faithfully on a finite dimensional connected manifold.

The exciting new result of Pardon is that by adapting 3-manifold techniques (finding incompressible surfaces and induce homomorphism to mapping class groups) he was able to show:

Theorem: (Pardon ’12) There is no faithful action of $\mathbb{Z}_p$ on any connected 3-manifolds.

And hence induce the Hilbert-Smith conjecture for dimension 3.

Discovering this result a few days ago has been quite exciting, I would hope to find time reading and blogging about that in more detail soon.

### Gromov boundary of hyperbolic groups

May 16, 2011

As we have seen in pervious posts, the Cayley graphs of groups equipped with the word metric is a very special class of geodesic metric space – they are graphs that have tons of symmetries. Because of that symmetry, we can’t construct groups with any kind of Gromov boundary we want. In fact, there are only few possibilities and they look funny. In this post I want to introduce a result of Misha Kapovich and Bruce Kleiner that says:

Let $G$ be a hyperbolic group that’s not a semidirect product $H \ltimes N$ where $N$ is finite or virtually cyclic. (In those cases the boundary of $G$ can be obtained from the boundary of $H$$). Theorem: When $G$ has $1$-dimensional boundary, then the boundary is homeomorphic to either a Sierpinski carpet, a Menger curve or $S^1$. OK. So what are those spaces? (don’t worry, I had no clue about what a ‘Menger curve’ is before reading this paper). The Sierpinski carpet (I believe most people have seen this one) Start with the unit square, divide it into nine equal smaller squares, delete the middle one. Repeat the process to the eight remaining squares. and repeat… Of course we then take the infinite intersection to get a space with no interior. Proposition: The Sierpinski carpet is (covering) 1-dimensional, connected, locally connected, has no local cut point (meaning we cannot make any open subset of it disconnected by removing a point). Theorem: Any compact metrizable planar space satisfying the above property is a Sierpinski carpet. The Menger curve Now we go to $\mathbb{R}^3$, the Menger curve is the intersection of the Sierpinski carpet times the unit interval, one in each of the $x, y, z$ direction. Equivalently, we may take the unit cube $[0,1]^3$, subtract the following seven smaller cubes in the middle: In the next stage, we delete the middle ‘cross’ from each of the remaining 20 cubes: Proceed, take intersection. Proposition: The Menger curve is 1-dimensional, connected, locally connected, has no local cut point. Note this is one dimensional because we can decompose the ‘curve’ to pieces of arbitrary small diameter by cutting along thin rectangular tubes, meaning if we take those pieces and slightly thicken them there is no triple intersections. Theorem: Any compact metrizable nowhere planar (meaning no open set of it can be embedded in the plane) space satisfying the above property is a Menger curve. Now we look at our theorem, infact the proof is merely a translation from the conditions on the group to topological properties of the boundary and then seeing the boundary as a topological space satisfies our universal properties. A group being Gromov hyperbolic implies the boundary is compact metrizable. No splitting over finite or virtually cyclic group implies the boundary is connected, locally connected and if it’s not $S^1$, then it has no local cut point. Now what remains is to show, for groups, if the boundary is not planar then it’s nowhere planar. This is an easy argument using the fact that the group acts minimally on the boundary. Please refer to first part of their paper for details and full proof of the theorem. Remark: When study classical Polish-school topology, I never understood how on earth would one need all those universal properties (i.e. any xxx space is a xxx, usually comes with a long condition include ten or so items >.<). Now I see in fact such thing can be powerful. i.e. sometimes this allows us to actually get a grib on what does some completely unimaginable spaces actually look like! Another wonderful example of this is the recent work of S. Hensel and P. Przytycki and the even more recent work of David Gabai which shows ending lamination spaces are Nobeling curves. ### Graph, girth and expanders April 11, 2011 In the book “Elementary number theory, group theory and Ramanujan graphs“, Sarnak et. al. gave an elementary construction of expander graphs. We decided to go through the construction in the small seminar and I am recently assigned to give a talk about the girth estimate of such graphs. Given graph (finite and undirected) $G$, we will denote the set of vertices by $V(G)$ and the set of edges $E(G) \subseteq V(G)^2$. The graph is assumed to be equipped with the standard metric where each edge has length $1$. The Cheeger constant (or isoperimetric constant of a graph, see this pervious post) is defined to be: $\displaystyle h(G) = \inf_{S\subseteq V_G} \frac{|\partial S|}{\min\{|S|, |S^c|\}}$ Here the notation $\partial S$ denote the set of edges connecting an element in $S$ to an element outside of $S$. Note that this is indeed like our usual isoperimetric inequalities since it’s the smallest possible ratio between size of the boundary and size of the set it encloses. In other words, this calculates the most efficient way of using small boundary to enclose areas as large as possible. It’s of interest to find graphs with large Cheeger constant (since small Cheeger constant is easy to make: take two large graphs and connect them with a single edge). It’s also intuitive that as the number of edges going out from each vertice become large, the Cheeger constant will become large. Hence it make sense to restrict ourselves to graphs where there are exactly $k$ edges shearing each vertex, those are called $k$-regular graphs. If you play around a little bit, you will find that it’s not easy to build large k-regular graphs with Cheeger constant larger than a fixed number, say, $1/10$. Definition: A sequence of k-regular graphs $(G_i)$ where $|V_{G_i}| \rightarrow \infty$ is said to be an expander family if there exists constant $c>0$ where $h(G_i) \geq c$ for all $i$. By random methods due to Erdos, we can prove that expander families exist. However an explicit construction is much harder. Definition: The girth of $G$ is the smallest non-trivial cycle contained in $G$. (Doesn’t this smell like systole? :-P) In the case of trees, since it does not contain any non-trivial cycle, define the girth to be infinity. The book constructs for us, given pair $p, q$ of primes where $p$ is large (but fixed) and $q \geq p^8$, a graph $(p+1)$-regular graph$X^{p,q}$ with $\displaystyle h(X^{p,q}) \geq \frac{1}{2}(p+1 - p^{5/6 + \varepsilon} - p^{1/6-\varepsilon})$ where $0 < \varepsilon < 1/6$. Note that the bound is strictly positive and independent of $q$. Giving us for each $p$, $(X^{p,q})$ as q runs through primes larger than $p^8$ is a $(p+1)$-regular expander family. In fact, this constructs for us an infinite family of expander families: a $(k+1)$-regular one for each prime $k$ and the uniform bound on Cheeger constant gets larger as $k$ becomes larger. One of the crucial step in proving this is to bound the girth of the graph $X^{p,q}$, i.e. they showed that $g(X^{p,q}) \geq 2 \log_p(q)$ and if the quadratic reciprocity $(\frac{p}{q}) = -1$ then $g(X^{p,q}) \geq 4 \log_p(q) - \log_p(4)$. This is what I am going to do in this post. Let $\mathbb H ( \mathbb Z)$ be the set of quaternions with $\mathbb Z$ coefficient, i.e. $\mathbb H ( \mathbb Z) = \{ a+bi+cj+dk \ | \ a,b,c,d \in \mathbb Z \}$ Fix odd prime $p$, let $\Lambda' = \{ \alpha \in \mathbb H(\mathbb Z) \ | \ \alpha \equiv 1 (mod 2) \}$ $\cup \ \{\alpha \in \mathbb H(\mathbb Z) \ | \ N(\alpha) = p^n \ \mbox{and} \ \alpha \equiv i+j+k (mod 2) \}$ where the norm $N$ on $\mathbb H(\mathbb Z)$ is the usual $N(a+bi+cj+dk) = a^2 + b^2 +c^2+d^2$. $\Lambda'$ consists of points with only odd first coordinate or points lying on spheres of radius $\sqrt{p^n}$ and having only even first coordinate. One can easily check $\Lambda'$ is closed under multiplication. Define equivalence relation $\sim$ on $\Lambda'$ by $\alpha \sim \beta$ if there exists $m, n \in \mathbb{N}$ s.t. $p^m \alpha = \pm p^n \beta$. Let $\Lambda = \Lambda' / \sim$, let $Q: \Lambda' \rightarrow \Lambda$ be the quotient map. Since we know $\alpha_1 \sim \alpha_2, \beta_1 \sim \beta_2 \Rightarrow \alpha_1\beta_1 \sim \alpha_2\beta_2$, $\Lambda$ carries an induced multiplication with unit. In elementary number theory, we know that the equation $a^2+b^2+c^2+d^2 = p$ has exactly $8(p+1)$ integer solutions. Hence the sphere of radius $p$ in $\mathbb H(\mathbb Z)$ contain $8(p+1)$ points. In each $4$-tuple $(a,b,c,d)$ exactly one is of a different parity from the rest, depending on whether $p\equiv1$ or $3 (mod 4)$. Restricting to solutions where the first coordinate is non-negative, having different parity from the rest (in case the first coordinate is $0$, we pick one of the two solutions $\alpha, -\alpha$ to be canonical), this way we obtain exactly $p+1$ solutions. Let $S'_p = \{ \alpha_1, \bar{\alpha_1}, \cdots, \alpha_k, \bar{\alpha_k}, \beta_1, \cdots, \beta_l \}$ be this set of $p+1$ points on the sphere. Note that the $\beta$s represent the solutions where the first coordinate is exactly $0$. Check that $S'_p$ generates $\Lambda'$. We have $\alpha_i \bar{\alpha_i} = p$ and $-\beta_j^2 = p$. By definition $S'_p \subseteq \Lambda'$ and $Q$ is injective on $S'_p$. Let $S_p = Q(S'_p)$. Consider the Cayley graph $\mathcal G (\Lambda, S_p)$, this is a $(p+1)$-regular graph. Since $S_p$ generares $\Lambda$, $\mathcal G (\Lambda, S_p)$ is connected. Claim: $\mathcal G (\Lambda, S_p)$ is a tree. Suppose not, let $(v_0, v_1, \cdots, v_k=v_0)$ a non-trivial cycle. $k \geq 2$. Since $\mathcal G$ is a Cayley graph, we may assume $v_0 = e$. Hence $v_1 = \gamma_1, \ v_2 = \gamma_1\gamma_2, \cdots, v_k = \gamma_1 \cdots \gamma_k$, for some $\gamma_1, \cdots, \gamma_k \in S_p$. Since $v_{i-1} \neq v_{i+1}$ for all $1\leq i \leq k-1$, the word $\gamma_1, \cdots, \gamma_k$ cannot contain either $\alpha_i\bar{\alpha_i}$ or $\beta_i^2$, hence cannot be further reduced. $\gamma_1, \cdots, \gamma_k = e$ in $\Lambda$ means for some $m, n$ we have $\pm p^n \gamma_1, \cdots, \gamma_k = p^m$. Since every word in $\Lambda'$ with norm $N(\alpha) = p^k$ must have a unique factorization $\alpha = \pm p^r w_m$ where $w_m$ is a reduces word of length $m$ in $S'_p$ and $2r+m = k$. Contradiction. Establishes the claim. Now we reduce the group $\mathbb H (\mathbb Z)$ mod $q$: $\pi_q: \mathbb H (\mathbb Z) \rightarrow \mathbb H (\mathbb{F}_q)$ One can check that $\pi_q(\Lambda') = \mathbb H (\mathbb{F}_q)^\times$. Let $Z_q = \{ \alpha \in \mathbb H (\mathbb{F}_q)^\times \ | \ \alpha = \bar{\alpha} \}$, $Z_q < \mathbb H (\mathbb{F}_q)^\times$ is a central subgroup. For $\alpha, beta \in \Lambda'$, $\alpha \sim \beta \Rightarrow \pi_q(\alpha)^{-1}\pi_q(\beta) \in Z_q$. Which means we have well defined homomorphism $\Pi_q: \Lambda \rightarrow \mathbb H (\mathbb{F}_q)^\times / Z_p$. Let $T_{p,q} = \Pi_q(S_p)$, if $q > 2\sqrt{q}$ we have $\Pi_q$ is injective on $S_p$ and hence$latex $| T_{p,q} | = p+1$.

Now we are ready to define our expanding family:

$X^{p,q} = \mathcal{G}( \Pi_q(\Lambda), T_{p,q})$.

Since $S_p$ generates $\Lambda$, $T_{p,q}$ generates $\Pi_q(\Lambda)$. Hence $X^{p,q}$ is $(p+1)$-regular and connected.

Theorem 1: $g(X^{p,q}) \geq 2 \log_p(q)$

Let $(e, v_1, \cdots, v_k=e)$ be a cycle in $X^{p,q}$, there is $t_1, \cdots, t_k \in T_{p,q}$ such that $v_i = t_1 t_2 \cdots t_k$ for $1 \leq i \leq k$.

Let $\gamma_i = \Pi_q^{-1}(t_i), \ \gamma_i \in S_p$, $\alpha = a_0 + a_1 i+a_2 j +a_3 k = \gamma_1 \cdots \gamma_k \in \Lambda$. Note that from the above arguement we know $\alpha$ is a reduced word, hence $\alpha \neq e_{\Lambda}$. In particular, this implies $a_1, a_2, a_3$ cannot all be $0$.

Also, since $\alpha$ is reduced, $\displaystyle N(\alpha) = \Pi_{i=1}^k N(\gamma_i) = p^k$.

By Lemma, since $\Pi_q(\alpha) = 1$, $\alpha \in \mbox{ker}(\Pi_q)$ hence $q$ divide $a_1, a_2, a_3$, we conclude

$N(\alpha) = a_0^2 + a_1^2 +a_2^2 +a_3^2 \geq q^2$

We deduce $p^k \geq q^2$ hence $k \geq \log_p(q)$ for all cycle. i.e. $g(X^{p,q}) \geq \log_p(q)$.

Theorem 2: If $q$ does not divide $p$ and $p$ is not a square mod $q$ (i.e. $(\frac{p}{q}) = -1$), then $g(X^{p,q}) \geq 4 \log_p(q) - \log_p(4)$.

For any cycle of length $k$ as above, we have $N(\alpha) = p^k \equiv a_0^2 (\mbox{mod} \ q)$, i.e. $(\frac{p^k}{q}) = 1$.

Since $(\frac{p^k}{q}) = ((\frac{p}{q})^k$, we have $(-1)^k = 1, \ k$ is even. Let $k = 2l$.

Note that $p^k \equiv a_0^2 (\mbox{mod} \ q^2)$, we also have

$p^{2l} \equiv a_0^2 (\mbox{mod} \ q^2)$

Hence $p^l \equiv a_0 (\mbox{mod} \ q^2)$.

Since $a_0^2 \leq p^{2l}$, $|a_0| \leq p^l$.

If $2l < 4 \log_p(q) - \log_p(4)$ we will have $p^l < q^2/2$. Then $|p^l\pm a_0| \leq 2|p^l| < q^2$.

But we know that $p^l \equiv a_0 (\mbox{mod} \ q^2)$, one of $p^l\pm a_0$ must be divisible by $q^2$, hence $0$.

Conclude $p^l = \pm a_0$, $N(\alpha) = p^k = a_0^2$, hence $a_1=a_2=a_3=0$. Contradiction.

### Isoperimetric inequality on groups

February 28, 2011

Back in high school, we have all learned and loved the isoperimetric inequality: “If one wants to enclose a region of area $\pi$ on the plane, one needs a rope of length at least $2 \pi$.” or equivalently, given $U \subseteq \mathbb{R}^2$ bounded open, we always have

$\ell(\partial U) \geq 2 \sqrt{\pi} \sqrt{\mbox{Area}(U)}$

Of course this generalizes to $\mathbb{R}^n$:

Theorem: Given any open set $U \subseteq \mathbb{R}^n$, we have

$\mbox{vol}_{n-1}\partial (U) \geq n\cdot \omega_n^{1/n} \mbox{vol}_n(U)^{\frac{n-1}{n}}$

Here $\omega_n$ is the volume of the unit n-ball. Note that the inequality is sharp for balls in $\mathbb{R}^n$.

One nature question to ask should be: for which other kind of spaces do we have such an inequality. i.e. when can we lower bound the volume of the boundary by in terms of the volume of the open set? If such inequality exists, how does the lower bound depend on the volume of the set?

I recently learned to produce such bounds on groups:
Let $G$ be a discrete group, fix a set of generators and let $C_G$ be its Cayley graph, equipped with the word metric $d$.

Let $N(R) = |B_R(e)|$ be the cardinality of the ball of radius $R$ around the identity.

For any set $U \subseteq G$, we define $\partial U = \{g \in G \ | \ d(g, U) = 1 \}$ i.e. points that’s not in $U$ but there is an edge in the Cayley graph connecting it to some point in $U$.

Theorem:For any group with the property that $N(R) \geq c_n R^n$, then for any set $U \subseteq G$ with $|U| \leq \frac{1}{2}|G|$,

$|\partial U| \geq c_n |U|^{\frac{n-1}{n}}$.

i.e. If the volume of balls grow (w.r.t. radius) as fast as what we have in $\mathbb{R}^n$, then we can lower bound the size of boundary any open set in terms of its volume just like what we have in $\mathbb{R}^n$.

Proof: We make use of the fact that right multiplications by elements of the group are isometries on Cayley graph.

Let $R = (\frac{2}{c_n}|U|)^\frac{1}{n}$, so we have $|B_R(e)| \geq 2|U|$.

For each element $g \in B_R(e)$, we look at how many elements of $U$ went outside of $U$ i.e. $| Ug \backslash U|$. (Here the idea being the size of the boundary can be lower bounded in terms of the length of the translation vector and the volume shifted outside the set. Hence we are interested in finding an element that’s not too far away from the identity but shifts a large volume of $U$ outside of $U$.)

The average value of $|Ug \backslash U|$ as $g$ varies in the ball $B_R(e)$ is:

$\displaystyle \frac{1}{|B_R(e)|} \sum_{g\in B_R(e)} |Ug \backslash U|$

The sum part is counting the elements of $U$ that’s translated outside $U$ by $g$ then sum over all $g \in B_R(e)$, this is same as first fixing any $u \in U$, count how many $g$ sends $u$ outside $U$, and sum over all $u \in U$ ( In fact this is just Fubini, where we exchange the order of two summations ). “how mant $g \in B_R(e)$ sends $u$ outside of $U$” is merely $|uB_R(e) \backslash U|$.

Hence the average is

$\displaystyle \frac{1}{|B_R(e)|} \sum_{u\in U}|uB_R(e) \backslash U|$.

But we know $|B_R(e)| \geq 2 \cdot |U|$, hence $|uB_R(e) \backslash U|$ is at least $\frac{1}{2}|B_R(e)|$.

Hence

$\displaystyle \frac{1}{|B_R(e)|} \sum_{u\in U}|uB_R(e) \backslash U|$

$\geq \frac{1}{|B_R(e)|} \cdot |U| \cdot \frac{1}{2} |B_R(e)| = \frac{1}{2} |U|$

Now we can pick some $g \in B_R(e)$ where $|Ug \backslash U| \geq \frac{1}{2}|U|$ (at least as large as average).

Since $g$ has norm at most $R$, we can find a word $g_1 g_2 \cdots g_k = g, \ k \leq R$.

For any $ug \in (Ug \backslash U)$, since $u \in U$ and $ug \notin U$, there must be some $1\leq i\leq k$ s.t. $u(g_1\cdots g_{i-1}) \in U$ and $u(g_1\cdots g_i) \notin U$.

Hence $u g_1 \cdots g_i \in \partial U$, $ug \in \partial U \cdot g_{i+1} \cdots g_k$.

We deduce that $\displaystyle Ug \backslash U \subseteq \partial U \cup \partial U g_k \cup \cdots \cup \partial U g_2 \cdots g_k$ i.e. a union of $k$ copies of $\partial U$.

Hence $R |\partial U| \geq k |\partial U| \geq |Ug \backslash U| \geq \frac{1}{2}|U|$

$|\partial U| \geq \frac{|U|}{2R}$

Since $|B_R(e)| \geq c_n R^n$, we have $R \leq c_n |B_R(e)|^{\frac{1}{n}}$. $R = (\frac{2}{c_n}|U|)^\frac{1}{n} = c_n |U|^\frac{1}{n}$, hence we have

$|\partial U| \geq c_n |U|^\frac{n-1}{n}$

Establishes the claim.

Remark: The same argument carries through as long as we have a lower bound on the volume of balls, not necessarily polynomial. For example, on expander graphs, the volume of balls grow exponentially: $B_R(e) \geq c \cdot e^R$, then trancing through the argument we get bound

$|\partial U| \geq c \cdot \frac{|U|}{\log{|U|}}$

Which is a very strong isoperimetric inequality. However in fact the sharp bound for expanders is $|\partial U| \geq c \cdot |U|$. But to get that one needs to use more information of the expander than merely the volume of balls.

On the same vein, we can also prove a version on Lie groups:

Theorem:Let $G$ be a Lie group, $g$ be a left invariant metric on $G$. If $\mbox{vol}_n(B_R) \geq c_n R^n$ then for any open set $U$ with no more than half of the volume of $G$,

$\mbox{vol}_{n-1}(\partial U) \geq c_n \mbox{vol}_n(U)^\frac{n-1}{n}$.

Note that to satisfy the condition $\mbox{vol}_n(B_R) \geq c_n R^n$, our Lie group must be at least n-dimensional since if not the condition would fail for small balls. $n$ might be strictly larger than the dimension of the manifold depending on how ‘neigatively curved’ the manifold is in large scale.

Sketch of proof: As above, take a ball twice the size of the set $U$ around the identity, say it’s $B_R(e)$. Now we consider all left translates of the set $U$ by element in $B_R(e)$. In average an element shifts at least half of $U$ outside of $U$. Pick element $g$ where $\mbox{vol}(gU \backslash U)$ is above average.

Let $\gamma: [0, ||g||]$ be a unit speed geodesic connecting $e$ to $g$. Consider the union of left translates of $\partial U$ by elements in $\gamma([0, ||g||])$, this must contain all of $gU \backslash U$ since for any $gu \notin U$ the segment $\gamma([0,||g||]) \cdot u$ must cross the boundary of $U$, i.e. there is $c \in [0,||g||]$ where $\gamma(c) u \in \partial U$, hence

$g\cdot u = \gamma(||g||) \cdot u = \gamma(||g||-c)\gamma(c) u \in \gamma(||g||-c) \cdot \partial U$

But since the geodesic has derivative $1$, the n-dimensional volume of the union of those translates is at most $\mbox{vol}_{n-1}(\partial U) \cdot ||g||$.

We have $\mbox{vol}_{n-1}(\partial U) \cdot R \geq \mbox{vol}_n(gU \backslash U) \geq \mbox{vol}_n(U)/2$

Now since we have growth condition

$2\mbox{vol}_n(U) = \mbox{vol}_n(B_R) \geq c_n R^n$

i.e. $R \leq c_n \mbox{vol}_n(U)^\frac{1}{n}$.

Conbine the two inequalities we obtain

$\mbox{vol}_{n-1}(\partial U) \geq c_n \mbox{vol}_n(U)^\frac{n-1}{n}$.

Establishes the theorem.

Remark: In general, this argument produces a lower bound on the size of the boundary in terms of the volume of the set as long as:
1. There is a way to ‘continuously translate’ the set by elements in the space.
2. We have a lower bound on the growth of balls in terms of radius.

The key observation is that the translated set minus the original set is always contained in a ‘flattened cylinder’ of the boundary in direction of the translate, which then has volume controlled by the boundary size and the length of the translating element. Because of this, the constant is almost never strict as the difference (translate subtract original) can never be the whole cylinder (in case of a ball, this difference is a bit more than half of the cylinder).